UV Detectors for POLLUX

Jon Lapington

University of Leicester
Outline

• Proposed detector technologies for POLLUX
• MCP UV Imager technologies
 • Photocathode choice and detector format
 • Large area MCP technology
 • ALD-MCP performance enhancement
 • Square format MCP detectors
• High speed readout techniques
 • Cross-strip
 • Centroiding Pixel Array
Proposed detector technologies for POLLUX

• FUV detector
 • 98-123 nm
 • Format (tbd) nominally 150 x 64.2 mm2
 • Open-faced MCP coated with alkali halide photocathode

• MUV detector
 • 119-220 nm
 • Format (tbd) nominally 152 x 44.8 mm2
 • Sealed tube MCP
 • Semi-transparent photocathode e.g. Cs$_2$Te – solar blind

• NUV detector
 • 210-390 nm
 • Format (tbd) nominally 90.5 x 44.9 mm2
 • CCD or sCMOS 4k x 4k pixel2 format, 13 µm pixel
 • Enhancement using graded AR coating, or scintillator coating?
MCP UV Imager technologies
FUV Photocathode & Detector

- Alkali halide deposited on MCP
 - Typically CsI or KBr
 - Much space heritage
 - Sensitive to incident angle
 - Choose MCP bias to match optical design
- Open tube configuration
 - Requires door mechanism
 - Higher mass, complexity, cost
 - Performance trade-off:
 - Repeller grid enhances QE at expense of spatial resolution

N.B. not coated MCPs
MUV Photocathode & Detector

• Solar-blind Cs$_2$Te
 • QE: 34% at 254 nm
 • cf. HST-STIS QE: 9%
 • Optical wavelength rejection
 • two orders of mag. >350 nm
 • zero red leak
 • Cut-off wavelength can be tuned
 • Short wavelength performance needs characterization

• Sealed tube
 • No door mechanism or contamination
 • Lower mass, complexity, cost
 • Downside: MgF$_2$ window cut-off
MCP UV Imager technologies

- New technology developed for Large Area Picosecond Detector (LAPPD)
 - LAPPD collaboration – instigated by Frisch, Chicago
 - LAPPD – primarily developed for HEP apps
- Glass capillary array
 - Developed by Incom – fibre optic heritage
 - Borosilicate construction – up to 200 x 200 mm2
- ALD technology originally developed for Si-MCP
 - Arradiance Inc. Nanofilm technology
 - Provides resistive and emissive layers
 - Order of magnitude improvement in detector lifetime
MCP UV Imager technologies

- **Glass Capillary Arrays**
 - Borosilicate glass – more durable than lead-glass MCPs
 - e.g. similar to Pyrex
 - Manufactured by hollow core draw – no etching
 - Stronger, less warpage
 - Allows MCPs > 100 mm – limited by lead-glass fragility
 - No lead content, reduced Potassium, Rubidium
 - Lower gamma ray x-section and intrinsic background

- **Atomic Layer Deposition**
 - Resistive layer for continuous dynode
 - Emissive layer for electron gain
 - No leaching of hydrogen cf. lead-glass MCP
 - Reduced photocathode ageing and MCP gain sag
 - Longer detector lifetime
Important issues from LAPPD

20 µm pore size – limits resolution

Dead area due to support bars

<table>
<thead>
<tr>
<th>INCOM LAPPD: "LARGE AREA PICOSECOND PHOTOELECTRIC"</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>Housing Size (mm)</td>
</tr>
<tr>
<td>Housing Material</td>
</tr>
<tr>
<td>Window</td>
</tr>
<tr>
<td>Photocathode</td>
</tr>
<tr>
<td>Wavelength sensitivity</td>
</tr>
<tr>
<td>QE (@ 365 nm and 23°C)</td>
</tr>
<tr>
<td>Microchannel Plates</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Anode configuration</td>
</tr>
<tr>
<td>Maximum Operating Voltage</td>
</tr>
<tr>
<td>High voltage distribution</td>
</tr>
<tr>
<td>Time Resolution</td>
</tr>
<tr>
<td>Spatial Resolution</td>
</tr>
<tr>
<td>Low Noise</td>
</tr>
</tbody>
</table>

Recent Functional LAPPDs

LAPPD 9
LAPPD 10
LAPPD 12
LAPPD 13

Craven - Large Area Micro-Channel Plates for LAPPD, 2014
Large area detector issues

• 20 µm resolution – requires smaller (10 µm) pore φ
 • LAPPD only down to 20 µm pores so far
 • Rocket flight will only prove 40 µm pore technology
• Typical L/d of 60:1 → 1.2 mm thickness
 • 10 µm pore MCPs will be 600 µm thick!
 • Practical limit to size/thickness ratio – when will it be reached?
 • If feasible, likely to need even more internal support
• Inherent dead-space due to support bars
 • alternative would be to mosaic smaller detectors
 • Added advantage of redundancy
• Semi-transparent photocathodes
 • Proximity focussing gap limits resolution – especially in the UV
 • Typically scales with detector size due to practicalities
 • Spatial resolution limited by transverse photoelectron momentum
• BUT – there is time and people have inclination to develop this technology
ALD enhanced MCPs

- ALD coated conventional MCPs
- Enhanced secondary electron emission
 - Higher QE due to higher photoelectron detection efficiency
 - Lower operating voltage due to higher gain per bounce
- Increased detector lifetime due to reduced MCP outgassing
 - ALD seals in MCP adsorbates
 - Reduces ion feedback events
 - Reduces photocathode QE fatigue
 - Reduces MCP gain loss
Square format MCP detector

- Thin-walled square tube MCP detector for LHC
- TORCH-Cherenkov detector element of LHCb upgrade
- Thin wall (3.5 mm) allows close packing of tube arrays
- Minimal dead space between active regions
- LHCb programme has enhanced to TRL6
- 64 x 64 pixel\(^2\) multilayer ceramic
- 60 x 60 mm\(^2\) with 57 x 57 mm\(^2\) active area

64 x 64 pixel\(^2\) multilayer ceramic readout
High speed readout techniques
Cross-strip – Siegmund, Berkeley

- Parallel cross strip (PXS) readout
- < 20 μm FWHM spatial resolution
- count rates ~2 MHz
- Lower gain requirement
- temporal resolution of ~ 1ns
- TRL 6 by using custom ASICs
- lower the power, mass and volume
- "standard" 50mm square active area MCP detector
- qualified for flight (temperature, vacuum, vibration)
- new 50 x 50 mm XS detector (2014)
Centroiding Pixel Array

- Square electrode array using “Image Charge”
- Event spread over small number of localised electrodes
- 40 mm CPA prototype at Leicester
- 32 x 32 pixel2 multilayer ceramic
- Currently optimised for timing electronics
- PetSYS 256-channel event timing ASIC-based system (TOFPET)

- Time over threshold \rightarrow pulse amplitude for sub-pixel centroiding
- Combined imaging and event timing \leq 100ps, 600k event/s/channel

- Investigating fast, lower noise multichannel ASICs
 - E.g. TARGET, DRS4 digitizers
 \rightarrow Higher precision centroiding at high event rate
Image Charge technique

- CPA uses Image Charge capacitive induction
- Eliminates secondary electron redistribution on anode
- cf. electronic readouts with direct charge collection
- Stable geometric charge footprint
- Reduced susceptibility to fixed pattern noise
- Flexible choice of detector input voltage
 - anode always at ground
- 2D electrode array
 - Very low capacitance and thus low noise due to small electrode size
 - Cf. distributed and overlapping strips across extent of cross-strip readout
- Flexible choice of electrode array geometry
 -TORCH readout highly assymetric
- Event deadtime paralysis applies to local event area only
 - Cf. cross-stripe with area of paralysis a cruciform as big as the readout
- Simple 3D interconnection technique developed to connect readout to front end electronics

N.B. Diagram show a different readout to CPA
Conclusions

• New glass capillary array + ALD MCP technologies important irrespective of MCP size
• Large MCPs (>100x100 mm2) will become available, but how useful given their intrinsic dead-space?
• Long but narrow detectors (e.g. 150x60 mm2) may escape this issue
• Mosaiced detectors could be a competitive solution
• Mosaiced detectors also provide levels of redundancy
• MCP electronic readouts with multichannel ASICs suitable for large readouts
• Offer improved local count rates and dynamic range cf. alternatives e.g. iCMOS, iCCD