

UV Detectors for POLLUX

Jon Lapington University of Leicester nDD

Outline

- Proposed detector technologies for POLLUX
- MCP UV Imager technologies
 - Photocathode choice and detector format
 - Large area MCP technology
 - ALD-MCP performance enhancement
 - Square format MCP detectors
- High speed readout techniques
 - Cross-strip
 - Centroiding Pixel Array

Proposed detector technologies for POLLUX

- FUV detector
 - 98-123 nm
 - Format (tbd) nominally 150 x 64.2 mm²
 - Open-faced MCP coated with alkali halide photocathode
- MUV detector
 - 119-220 nm
 - Format (tbd) nominally 152 x 44.8 mm²
 - Sealed tube MCP
 - Semi-transparent photocathode e.g .Cs₂Te solar blind
- NUV detector
 - 210-390 nm
 - Format (tbd) nominally 90.5 x 44.9 mm²
 - CCD or sCMOS 4k x 4k pixel² format, 13 μ m pixel
 - Enhancement using graded AR coating, or scintillator coating?

MCP UV Imager technologies

FUV Photocathode & Detector

- Alkali halide deposited on MCP
 - Typically CsI or KBr
 - Much space heritage
 - Sensitive to incident angle
 - Choose MCP bias to match optical design
- Open tube configuration
 - Requires door mechanism
 - Higher mass, complexity, cost
 - Performance trade-off:
 - Repeller grid enhances QE at expense of spatial resolution

Comparison of UV photocathode materials in opaque and semi-transparent (S.T.) modes – Carruthers, 2000.

N.B. not coated MCPs

MUV Photocathode & Detector

- Solar-blind Cs₂Te
 - QE: 34% at 254 nm
 - cf. HST-STIS QE: 9%
 - Optical wavelength rejection
 - two orders of mag. >350 nm
 - zero red leak
 - Cut-off wavelength can be tuned
 - Short wavelength performance needs characterization
- Sealed tube
 - No door mechanism or contamination
 - Lower mass, complexity, cost
 - Downside: MgF₂ window cut-off

MCP UV Imager technologies

- New technology developed for Large Area Picosecond Detector (LAPPD)
 - LAPPD collaboration instigated by Frisch, Chicago
 - LAPPD primarily developed for HEP apps
- Glass capillary array
 - Developed by Incom fibre optic heritage
 - Borosilicate construction up to 200 x 200 mm²
- ALD technology originally developed for Si-MCP
 - Arradiance Inc. Nanofilm technology
 - Provides resistive and emissive layers
 - Order of magnitude improvement in detector lifetime

MCP UV Imager technologies

- Glass Capillary Arrays
 - Borosilicate glass more durable that lead-glass MCPs
 - e.g. similar to Pyrex
 - Manufactured by hollow core draw no etching
 - Stronger, less warpage
 - Allows MCPs > 100 mm limited by lead-glass fragility
 - No lead content, reduced Potassium, Rubidium
 - Lower gamma ray x-section and intrinsic background
- Atomic Layer Deposition
 - Resistive layer for continuous dynode
 - Emissive layer for electron gain
 - No leaching of hydrogen cf. lead-glass MCP
 - Reduced photocathode ageing and MCP gain sag
 - Longer detector lifetime

Important issues from LAPPD

Large area detector issues

- 20 μ m resolution requires smaller (10 μ m) pore ϕ
 - LAPPD only down to 20 μm pores so far
 - Rocket flight will only prove 40 μm pore technology
- Typical L/d of 60:1 \rightarrow 1.2 mm thickness
 - 10 μm pore MCPs will be 600 μm thick!
 - Practical limit to size/thickness ratio when will it be reached?
 - If feasible, likely to need even more internal support
- Inherent dead-space due to support bars
 - alternative would be to mosaic smaller detectors
 - Added advantage of redundancy
- Semi-transparent photocathodes
 - Proximity focussing gap limits resolution especially in the UV
 - Typically scales with detector size due to practicalities
 - Spatial resolution limited by transverse photoelectron momentum
- BUT there is time and people have inclination to develop this technology

ALD enhanced MCPs

- ALD coated conventional MCPs
- Enhanced secondary electron emission
 - Higher QE due to higher photoelectron detection efficiency
 - Lower operating voltage due to higher gain per bounce
- Increased detector lifetime due to reduced MCP outgassing
 - ALD seals in MCP adsorbates
 - Reduces ion feedback events
 - Reduces photocathode QE fatigue
 - Reduces MCP gain loss

Square format MCP detector

- Thin-walled square tube MCP detector for LHC
- TORCH-Cherenkov detector element of LHCb upgrade
- Thin wall (3.5 mm) allows close packing of tube arrays
- Minimal dead space between active regions
- LHCb programme has enhanced to TRL6
- 64 x 64 pixel² multilayer ceramic
- 60 x 60 mm² with 57 x 57 mm² active area

64 x 64 pixel² multilayer ceramic readout

High speed readout techniques

Cross-strip – Siegmund, Berkeley

- Parallel cross strip (PXS) readout
- < 20 μm FWHM spatial resolution
- count rates ~2 MHz
- Lower gain requirement
- temporal resolution of ~ 1ns
- TRL 6 by using custom ASICs
- lower the power, mass and volume
- "standard" 50mm square active area MCP detector
- qualified for flight (temperature, vacuum, vibration)
- new 50 x 50 mm XS detector (2014)

Vallerga 2016

Centroiding Pixel Array

- Square electrode array using "Image Charge"
- Event spread over small number of localised electrodes
- 40 mm CPA prototype at Leicester
- 32 x 32 pixel² multilayer ceramic
- Currently optimised for timing electronics
- PetSYS 256-channel event timing ASIC-based system (TOFPET)
- Time over threshold → pulse amplitude for subpixel centroiding
- Combined imaging and event timing ≤ 100ps, 600k event/s/channel
- Investigating fast, lower noise multichannel ASICs
 - E.g. TARGET, DRS4 digitizers
 - ightarrow Higher precision centroiding at high event rate

Image Charge technique

N.B. Diagram show a different readout to CPA

Conclusions

- New glass capillary array + ALD MCP technologies important irrespective of MCP size
- Large MCPs (>100x100 mm²) will become available, but how useful given their intrinsic dead-space?
- Long but narrow detectors (e.g. 150x60 mm²) may escape this issue
- Mosaiced detectors could be a competitive solution
- Mosaiced detectors also provide levels of redundancy
- MCP electronic readouts with multichannel ASICs suitable for large readouts
- Offer improved local count rates and dynamic range cf. alternatives e.g. iCMOS, iCCD