

Spectrograph optical design for POLLUX.

Cross-disperser design and efficiency budget

Eduard Muslimov

Aix Marseille Univ, CNRS, LAM

erc

Marseille, 9-10 October 2017

2nd POLLUX Workshop

Outline

- ≻Current optical design
- Cross-dispersers design
- ≻Integration of 3 channels
- Diffraction efficiency estimation
- ≻ Summary

Aix<mark>*</mark>Marseille

- ✓ Critical points
- \checkmark Advantages and potential reserves
- ✓ Open questions

Baseline optical design concept (on example of the MUV channel)

Resolution defined by the aberrations

Theoretical limit

$$R_{theor} = \frac{2 \cdot D_{collim} tg(\varphi_{blaze})}{F_{telescope} tg(\omega_{slit})} C \qquad \text{where} \quad C = \sqrt{\frac{D_{collim}}{D_{inc..beam}}} \quad -\text{ crop-factor}$$

Image quality & resolution

wavelength, nm

Spectral resolution of the spectrographs with aberrations and aperture crop taken into account 5

Aix*Marseille

Components summary

	FUV	MUV	NUV						
Wavelengths, nm	90-123	119-220	210-390						
Spectral length of orders,	2.3-3.9	1.86-6.1	1.9-6.3						
nm									
Min theoretical spec.	123638/n.a.	171298/121126	170377/120475						
resolution (full/cropped									
aperture)									
Collimator									
Focal length, mm	3898	1884,96	1812.5						
Clear aperture, mm	185.0	94.6x48	91.1x47						
Aperture decenter, mm (Y)	-208.5	-124	-119						
Echelle									
Frequency, mm ⁻¹	313.7	235	76.2						
Blaze angle, deg	34.683	63.234	64.006						
Orders	30-40	35-64	61-112						
Clear aperture, mm (X*Y)	185.4x237.4	48x210	47x107						
Ap. decenter, mm (X*Y)	0,0	-24	-23.5						
Detector									
Format. mm (X*Y)	150x64.2	152x44.8	90.5x44.9						
Pixel size, um	12.5	12.5	13						
Sampling	3 2.5 2.5								
		6							

Cross-dispersers: summary

	FUV	MUV	NUV					
Туре	Concave freeform surface+							
	1 st generation holographic grating							
Focal length, mm	3350	1350	1350					
Grooves frequency , mm ⁻¹	621.9	332.9	186.99					
Recording	532	532	532					
wavelength, nm								
Recording sources	(647.084, 3968.782)	(135.299, 2347.341)	(52.260, 1642.907) and					
coordinates	and (-692.588,	and (-284.741,	(-111.742, 1647.737)					
	4016.068)	2363.875)						
Clear aperture, mm	348x202	247x65	181x58					
(X*Y)								
Aperture decenter,	2,0	2.5, -24	2, -23.5					
mm (X*Y)								
Asphericity	0.8/2.4	2.5/4.0	2.1/3.2					
RMS/PTV, microns								

Aix*Marseille

Cross-dispersers: surface shape

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + \sum_{i=1}^{\infty} A_i Z_i(\rho, \varphi)$$

Ν

Z ₅	$\sqrt{6}(\rho^2\cos 2\varphi)$	Obl. ast.
Z_6	$\sqrt{6}(\rho^2\sin 2\varphi)$	Vert. ast.
Z ₇	$\sqrt{8}(3\rho^3-2\rho)\sin\phi$	Vert. coma.
Z ₉	$\sqrt{8}\rho^3\sin 3\phi$	Vert. tref.
Z ₁₁	$\sqrt{5}(6\rho^4 - 6\rho^2 + 1)$	Sph.
Z ₁₂	$\sqrt{10}(4\rho^4 - 3\rho^2)\cos 2\varphi$	V. 2 nd ast.
Z ₁₃	$\sqrt{10}(4\rho^4-3\rho^2)\sin 2\phi$	Ob. 2 nd ast.
Z ₁₄	$\sqrt{10}\rho^4\cos 4\phi$	Vert. quadr.

Freeform surfaces summary

Channel	FUV	MUV	NUV
BFS radius, mm	6708.51	2711.13	2714.74
BFS center shift, μm	0.9	3.7	3.1
RMS residual, µm	0.8	2.5	2.1
PTV residual, µm	2.4	4.0	3.2
Size, mm (full surface/clear aperture)	312.07/ 348x202	184.03/ 247x65	143.84/ 181x58

Cross-dispersers: surface shape

Deviation of the cross-disperser surface shape from the BFS (in microns)

Channels integration

Top view

Data for diffraction efficiency

Rigorous coupled wave analysis

RCWA simulations are implemented with GD-calc (© Kenneth C. Johnson)

Aix∗Marseille

Input parameters

- ✓ Layer permittivity
- [(1.37+7.62i)^2 for Al]
- ✓ Grating period
- ✓ Wavelength
- ✓ Grating height
- ✓ Number of grating strata (for "staircase" approximation)
- ✓ Max diffraction order index [10]
- ✓ Spherical angles (θ, ϕ)

Definition of the grating profile

Assumpltions:

- + Sinusoidal profile
- + Exact shape of the surface is used
- + Dispersion on the echelle is accounted for
- Grooves spacing change neglected
- Grooves curvature neglected

 $\lambda_{medium} = 165.8 \text{ nm}$

16

Estimation of overall efficiency

Example of overall efficiency estimation for MUV channel

Critical points

- □ Order spectral length
- Dimensions

Aix+Marseille

- □ Echelle frequency
- □ Echelle ruled area
- Efficiency (all the components)
- □ Number of components
- Cross-disperser DE uniformity

Potential reserves

✓ Dimensions

Aix*Marseille

- ✓ Collimator focus and clear aperture
- ✓ Resolution
- ✓ Echelle parameters
- ✓ Camera aberrations correction
- ✓ Cross-dispersers grooves profile
- ✓ Hologram recording layout and grooves pattern
- ✓ Cross-disperser mosaic design

Open questions

- > Currently achievable/prospective echelle parameters?
- Manufacturability of the holographic grating on freeform surface?
- Cross-disperser groove profile?
- > Detector tiling?

ix*****Marseille

- Unify some parameters? (e.g. MUV and NUV collimators)
- Design sensitivity?
- Simulated image and orders stitching?
- Advanced end-to-end simulations? (gratings + polarimeters + coatings etc.)

Thank you for your attention!

Aix***Marseille** université

LUVOIR telescope

- LUVOIR (Large UV/Optical/Infrared) is one of four Decadal Survey Mission Concept Studies initiated by NASA in Jan 2016.
- ➤ The current baseline telescope design is a 15-m deployable TMA
- ➢ It will accommodate four instrument bays:
 - ✓ High Definition Imager HDI (STScI+)
 - ✓ UV/O/IR Coronagraph (STScI+)
 - ✓ UV Multi-object Spectrograph LUMOS (Univ. of Colorado +)
 - ✓ UV Spectropolarimeter Pollux (CNES+)

Telescope parameters

FoV	10'x8'
Eff. Focal length	~300 m
F/#	20
Primary mirror F/#	1.45
Primary diameter	15 m
Obscuration	~3m
	23

Matthew R. Bolcar "LUVOIR Mission Concept: Pollux instrument Optical Design & Interface"

LUVOIR payload

Aix*Marseille

Specifications

Technical specifications of the medium UV-spectrograph*

Parameter	Target value
Spectral range	119-220 nm
Spectral resolution	>120 000 (up to 200 000)
Entrance slit angular width	0.03"
Sampling	2.5-3 pix/resolution element
Spectral length in the image line	6 nm
Total volume (for the entire instrument)	~4800x4000x2382 mm

 F_{col} =1365.8 mm, F_{cam} = 900 mm

Image quality and spectral resolution

Spectral resolution defined by the aberrations compared to the target values and theoretical limit for ¹/₂ aperture

Echelle design and challenges

Max. order spectral length, nm

Demonstration of the key parameters trade-off: Left – Echelle frequency vs. the order length; Right – Detector length vs. the order length.

Order spectral length, nm Current echelle parameters

-	-
Ruled area	31.1x201.0 mm
Grooves frequency	248 mm ⁻¹
Blaze angle	70.12°

Detector format

Aix*Marseille Cross-disperser holographic recording

LABORATOIRE [

Aix*Marseille

Surface shape

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + \sum_{i=1}^{N} A_i Z_i(\rho, \varphi)$$

Z ₅	$\sqrt{6}(\rho^2\cos 2\phi)$	Obl. ast.
Z_6	$\sqrt{6}(\rho^2\sin 2\varphi)$	Vert. ast.
Z ₇	$\sqrt{8}(3\rho^3-2\rho)\sin\phi$	Vert. coma.
Z ₉	$\sqrt{8}\rho^3\sin 3\phi$	Vert. tref.
Z ₁₁	$\sqrt{5}(6\rho^4 - 6\rho^2 + 1)$	Sph.
Z ₁₂	$\sqrt{10}(4\rho^4-3\rho^2)\cos 2\varphi$	V. 2 nd ast.
Z ₁₃	$\sqrt{10}(4\rho^4 - 3\rho^2)\sin 2\varphi$	Ob. 2 nd ast.
Z ₁₄	$\sqrt{10}\rho^4\cos 4\phi$	Vert. quadr.

Asphericity of the cross-disperser grating surface (μm) BFS radius 1806.48 mm, center displacement 2.8 μm RMS residual 1.35 μm, Max. residual 3.94 μm Aix*Marseille

Conclusions

- The optical design allows to meet the main requirements
- 6.1 nm coverage in a single order
- Spectral resolution R=120200.

ix*****Marseille

- The design has only three reflective surfaces and it is relatively compact.
- The design relies on an innovative free-form holographic grating.
- Technological feasibility was demonstrated for the freeform shape and holographic recording separately.

Aix**+**Marseille

Open questions

- Currently achievable/prospective echelle parameters?
- Manufacturability of the holographic grating on freeform surface?
- Cross-disperser groove profile?
- Possible diffraction efficiency losses?

Echelle aperture

Configuration: All 12

38

Cross-disperser aperture

Aix*Marseille

39

Waveband

Extracted from tech. note LUVOIR; M. Bolcar

- Telescope Transmission
 - 30%^4 = 8%
- Instrument transmission
 - 50%^3 = 12.5%
- Optical efficiency: 1%
- Without polarization, without QE
- Impact on the transmission in the rest of the band

Aix*Marseille université

Preliminary radiometric estimate

	90	98	115	120	120	150	200	250	300	350	400
	EUV			MUV			NUV				
TOTAL with polarizer	0,000%	0,000%	0,404%	1,069%	0,417%	0,984%	1,743%	1,674%	1,674%	1,674%	1,674%
Telescope (2)	1,2%	0,8%	24,0%	37,0%	37,0%	52,2%	65,6%	65,6%	65,6%	65,6%	65,6%
Mirror (1)	33,0%	30,0%	70,0%	78,0%	78,0%	85,0%	90,0%	90,0%	90,0%	90,0%	90,0%
Instrument with pol	0,0%	0,0%	1,7%	2,9%	1,1%	1,9%	2,7%	2,6%	2,6%	2,6%	2,6%
Instrument without pol	1,1%	0,9%	4,9%	6,1%	2,4%	3,1%	3,6%	3,6%	3,6%	3,6%	3,6%
Optics											
Polarimeter (4,5)	3,6%	2,7%	34,3%	47,5%	47,5%	61,4%	72,9%	70,0%	70,0%	70,0%	70,0%
Splitter(3,1)	100,0%	100,0%	100,0%	100,0%	39,0%	42,5%	45,0%	45,0%	45,0%	45,0%	45,0%
Collimator (1)	33,0%	30,0%	70,0%	78,0%	78,0%	85,0%	90,0%	90,0%	90,0%	90,0%	90,0%
Echelle	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%
Cross-disp.	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%
Folding M.(1)	33,0%	30,0%	70,0%	78,0%	78,0%	85,0%	90,0%	90,0%	90,0%	90,0%	90,0%
Detector (8)	40,0%	40,0%	40,0%	40,0%	40,0%	40,0%	40,0%	40,0%	40,0%	40,0%	40,0%

(1): Al+AlF3+3A oxyde

(2): 4 mirrors for the telescope

(3): MUV+NUV: AI+AIF3+3A oxyde for the folding + spatial splitter

(4): Al+AlF3+3A oxyde with 3 mirrors

(5): MgF2: 70%

(6): Estimate

(7): Estimate

(8): 40% from Robert Grange email

Comparison with VLS

The holographic grating recording scheme: The two sources are points emitting @ 532 nm.

IF @ 120.3 nm with hologr. grating IF FWHM = 23.6 μ m