



# LUVOIR/POLLUX Instrument configuration baseline Overview

Workshop, Marseille 09/10/2017



#### Introduction

• Aims of this talk

nes

- Give an overview of the current status of POLLUX
- Define the POLLUX instrument baseline
- List all critical and/or open points
- Identify/validate next steps
- Share concerns/possible solutions



# Driving Requirements (currently)

- REQ 01: Spectral Resolution: 120 000 (200 000)
- REQ 02: Waveband:
  - REQ 02a: 98-390 nm (90-visible)
  - REQ02b: Minimum order length: 5 nm
  - REQ 02c: Full wavelength range avaiable in one shot
  - REQ 02d: 1-2nm overlap between wavelength range
- REQ 03: SNR

ines

- SNR=10 for flux 1e-17 erg/s/cm2 in the NV line (124 nm) in a brown dwarf within 40 pc and dispersion 100,000 in 10,000 seconds
- + S/N per resolution element of 100 integrating for 1 hour a flux of 10^- 14 erg cm^-2 s^-1 A^-1
- REQ 04: Polarization
  - REQ 04a: Circular + linear
  - REQ 04b: Sensitivity: 10<sup>-4</sup> 10<sup>-5</sup>
- REQ 05: Aperture size: 0.03"
- REQ 06: Observing mode: with and without polarimetry







#### Spectral channels

- Baseline
  - 2+1 channels compatible with optical limits and detector characteristics

| FUV      | MUV      | NUV      |
|----------|----------|----------|
| • ≈90nm  | • ≈119nm | • ≈210nm |
| • ≈123nm | • ≈220nm | • ≈390nm |

- Rationales/drivers:
  - Limit the amount of channels (huge photon loss when splitting)
  - Minimum: 90nm discussed next slide
  - Maximum (400nm): related to the nb of octave
  - Intermediate (220nm): arbitrary (but detector limitations)
  - Overlap: depends on the technology (see architecture)





• Baseline

cnes

2+1 channels compatible with optical limits and detector characteristics



- Spectral Separation
  - A flip-mirror mechanism at the entrance to feed
    - either the FUV channel or the MUV+NUV channels
  - A spatial splitter to separate the MUV and NUV
    - The collimator will act as spatial splitter (conservative approach)





#### Baseline block diagram



- This architecture allows for:
  - Dedicated polarimeters (FUV and MUV/NUV)
  - Large overlap between wavebands
  - Injecting calibration light sources
  - Parallel developments





#### **Baseline block diagram**







#### Schematic view







#### **Baseline block diagram**







### Echelle grating feasibility







## Spectral order length

| FUV          | MUV          | NUV          |  |  |  |
|--------------|--------------|--------------|--|--|--|
| 2.3 – 3.9 nm | 1.9 – 6.1 nm | 1.9 – 6.3 nm |  |  |  |



- Echelle grating from Richardson grating company
  - Blaze angle: 63.00 deg
  - Groove density: about 316.00 lines/mm
  - Grating clear aperture: 66.70 mm by 146.91 mm
- This grating is on catalog but:
  - Is facet shape compatible with UV?
  - Tunable or as it is ?
  - To be space qualified (with a compatible coating)
  - Single provider identified so far !
  - Availability in 15-20 years from now?





#### Optical design (see Eduard's talk)







### Example of "fully" compliant config.



WAVELENGHT RANGE: From 120 to 220 nm (MUV) Order size (max): 14.8 nm Order size (min): 6.2 nm

AVERAGE RESOLUTION: 125 000 Minimum Resolution: 91 000 Maximum Resolution: 208 000 CROSS DISPERSER CHARACTERISTICS: Groove density: 450 lines/mm 🖌





#### Cross-disperser (see Eduard's talk)

- Cross-disperser acting as camera mirror
  minimizes the amount of optical elements
- This configuration adds complexity on this element.
  - Grating on an aspherical surface with non-linear lines
  - The feasibility to be assessed
- Back-up option
  - Consider a plane cross-disperser + a camera mirror
  - This option is close to what exists today.
  - Note that the total efficiency of this could be higher than the baseline.



COOS LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE

#### **Coating** (see Luca's talk)



- As baseline Al+AlF3 could be considered
- Investigations on the coating thicknesses could help improving the efficiency





#### Polarimeters (see Arturo's talk)

- MUV/NUV channels:
  - Modulator composed of 3 rotating mirrors
  - Analyser is a Wollaston made of MgF2
- FUV channel:
  - More critical because of the low reflectivity of coating and the absence of transparent material
  - Modulator composed of 3 rotating mirrors coated with SiC
    - At high incidence angle SiC reflects >80% (to be confirmed)
  - Analyser using Brewster angle
    - but only the P polarisation can be used i.e. <50% transmission
- Retractability:
  - When retracted the optical path shall be compensated
  - A focus compensator is required in the MNUV:
    - Translate the detector is not sufficient
    - Translate the collimator requires to 2-axis mechanism (off-axis mirror)
    - Pick another field up but requires 2 mirrors to feed the channel in any case





### Detector baseline (see Jon's talk)

- FUV and MUV channels
  - MCP detectors
    - 200x200mm with 20mu spatial resolution element
  - "Heritage" from LUMOS

- NUV channel
  - CCD detectors
    - 4k x 4k with 13 microns pixel size



LUVOIR Large UV/Optical/Infrared Surveyor

### Calibration unit possible injection



See Pierre's talk for the calibration unit

#### (Preliminary) Maturity matrix (to be discussed)

Large UV/Optical/Infrared Surveyor

cnes

LABORATOIRE D'ASTROPHYSIQUE

DE MARSEILL

| Component        | Maturity | Back-up          | Comment                                                                                                    |  |  |  |  |
|------------------|----------|------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Flip-mirror      | High     | Not needed       | Equivalent mechanism already flying                                                                        |  |  |  |  |
| FUV polarimeter  | Low      | Not identified   |                                                                                                            |  |  |  |  |
| MNUV polarimeter | Medium   | Arago's proposal | No critical except for the coatings                                                                        |  |  |  |  |
| Collimators      | High     | Not needed       | Classical OAP                                                                                              |  |  |  |  |
| Echelle grating  | Very low | Not identified   | Single provider, UV compatibility to<br>be assessed, space qualification<br>required, availability in 15y, |  |  |  |  |
| Cross-dispersers | Medium   | TBD              | Under study with Horiba<br>Equivalent grating have flown.                                                  |  |  |  |  |
| EUV coating      | Medium   | LUMOS coating    |                                                                                                            |  |  |  |  |
| MNUV coating     | Medium   | LUMOS coating    | developments are expected                                                                                  |  |  |  |  |
| FUV detector     | Medium   | CPA under dev.   | Based on LUMOS                                                                                             |  |  |  |  |
| MUV detector     | Medium   | CPA under dev.   | Based on LUMOS                                                                                             |  |  |  |  |
| NUV detector     | High     | Not needed       | Equivalent already flying                                                                                  |  |  |  |  |





#### Preliminary radiometric estimate

|                             | EUV   |           |           | MUV       |           |           | NUV       |           |           |           |           |
|-----------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Wavelength (nm)             | 90    | 98        | 115       | 120       | 120       | 150       | 200       | 250       | 300       | 350       | 400       |
| POLLUX+Telescope (w/o       | 0,01% | 0,01      | 1,73      | 3,00      | 1,35      | 1,60      | 2,39      | 2,39      | 2,39      | 2,39      | 2,39      |
| pol)                        |       | %         | %         | %         | %         | %         | %         | %         | %         | %         | %         |
| POLLUX (max)+Telescope      | 0,06% | 0,04      | 5,10      | 8,81      | 3,97      | 4,71      | 7,03      | 7,03      | 7,03      | 7,03      | 7,03      |
| (w/o pol)                   |       | %         | %         | %         | %         | %         | %         | %         | %         | %         | %         |
| POLLUX+Telescope (with pol) | 0,00% | 0,00<br>% | 1,07<br>% | 2,19<br>% | 0,67<br>% | 0,80<br>% | 0,00<br>% | 0,60<br>% | 0,96<br>% | 1,20<br>% | 1,20<br>% |
| POLLUX (max)+Telescope      | 0,01% | 0,01      | 3,13      | 6,43      | 1,98      | 2,36      | 0,00      | 1,76      | 2,81      | 3,52      | 3,52      |
| (with pol)                  |       | %         | %         | %         | %         | %         | %         | %         | %         | %         | %         |

- Assumming (to be consolidated a lot!):
  - 4 mirrors for the telescope (Al+AlF3+3A oxyde)
  - polarimeters from Arturo inputs
  - Coatings from Udo's inputs (i.e. AI+AIF3)
  - Gratings (echelle and cross-disperser): 50% (based on internal discussions)
  - Detectors 40% (based on internal discussions)
  - One folding mirror
  - Spatial splitter



# Driving Requirements (currently)

- REQ 01: Spectral Resolution: 120 000 (200 000)
- REQ 02: Waveband:

ABORATOIRE D'AS

ines

- REQ 02a: 98-390 nm (90-visible)
- REQ02b: Minimum order length: 5 nm X
- REQ 02c: Full wavelength range available in one shot X
- REQ 02d: 1-2nm overlap between wavelength range
- REQ 03: SNR ?
  - SNR=10 for flux 1e-17 erg/s/cm2 in the NV line (124 nm) in a brown dwarf within 40 pc and dispersion 100,000 in 10,000 seconds
  - + S/N per resolution element of 100 integrating for 1 hour a flux of 10^- 14 erg cm^-2 s^-1 A^-1
- REQ 04: Polarization
  - REQ 04a: Circular + linear
  - REQ 04b: Sensitivity: 10^-4 10^-5 ?
- REQ 05: Aperture size: 0.03" ✓
- REQ 06: Observing mode: with and without polarimetry





#### (possible) Alternative Architecture







#### **Open points**

- Urgent
  - Define target and goal requirements (priorities)
- Critical point
  - Echelle grating based on the capability of a single company ! No back-up option with the same performance identified for the moment
  - Focusing compensator for the MUV and NUV channels
- Open points:
  - Aternative dedicated Ly-alpha channel
  - Cross disperser performance (e.g. improved with ion etching)
- Next steps:
  - Tune the numbers to have a coherent design and a consolidated baseline !
  - Optical analysis (preliminary tolerances)
  - Mechanical architecture and preliminary design (volume and mass estimates)
  - Electrical architecture and preliminary design (power consumption estimate)